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Project Overview

* Objectives:

— Design and construct a prototype control
system to damp inter-area oscillations by using
HVDC modulation and real-time PMU
feedback.

— Demonstrate the performance, reliability, and
safety of this prototype control system by
conducting closed-loop tests on the PDCI.

e Status:

— A prototype control system has been
developed, which modulates active power
through the Pacific DC Intertie (PDCI) and uses
frequency information from BPA-based PMUs
for real-time feedback control.

— Development of the prototype control system

is on schedule and progressing towards closed- o
. . . CONSORTIUM for
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Expected Benefits

* Improved system reliability
* Additional contingency in a stressed system condition

* Economic benefits:
— Avoidance of costs from an oscillation-induced system breakup
(e.g., 1996)
— Potential future reduced need for new transmission capacity
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Design Objectives for PDCI-based Controller

* Control Objectives:

— Dampen all modes of interest for all operating Feedback control

conditions w/o destabilizing peripheral modes
— Do NOT worsen transient stability (first swing)
of the system

should be proportional
to frequency difference
of the two areas

— Do NOT interact with frequency regulation (Local minus Remote)
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Final Controller Design

e Based on:

v
. Rabe
— Extensive control theory —| P\ [—
dana IYS is Pmax tower R
i ; System _
— Many simulation cases [ s v, .
PDCI |
— Many years of actual / — > = PMU ]
. ~ )
system probing tests Pmax
. Gai Filter
* Local Location = Lower o il
APcmd K - HE) | AD

Columbia basin.
e Remote Location = COIl.
References:

¢ H(Z) = “CUStomiZEd” 1. D. Trudnowski, D. Kosterev, J. Undrill, “PDCI
BESSEI derivative ﬁlter. Damping Control Analysis for the Western North

American Power System,” Proceedings of the

* K=5to15 MW/ mHz IEEE PES General Meeting, July 2013.
2. D. Trudnowski, “2014 Probing Test Analysis,”
° Pmax=125 MW Report for BPA project TIP-289, Jan. 2014.
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PDCI Probing Tests

Low frequency probing tests (2009-2014)
modulate PDCI by +/- 20 MW from 0.02 Hz to 5 Hz
High frequency probing tests (2014) modulate
PDCI by +/-5 MW from 1 Hz to 28 Hz
Goal of low frequency tests is to excite the 0 -5
Hz range of oscillations in WECC
Goal of high frequency tests is to evaluate the
dynamics of the PDCI system
What we’ve learned
— Why this control didn’t work in 1970s
— New theory supported by tests
— ldentified optimal feedback signal locations (local
and remote)
— Feedback gain of 5 to 10 MW/mHz will provide
SIGNIFICANT damping
— PDCI has adequate bandwidth
— Optimal design of feedback filter
— Extensive testing and fine-tuning of PMUs (on going)
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Redundancy and Diversity in Feedback

Diversity = Geographic Spread Redundancy =

Multinle PMUs/sit Index Local PMU Remote PMU
ultiple s/site - -
Controller reads 8 PMUs each update cycle —16.67 1 Local Site 1, Remote Site 1,
ms). PMU 1 PMU 1
_ 4local and 4 remote > Local Site 1, Remote Site 1,
— 16 possible PMU feedback pairs PMU 1 PMU 2
These 16 real-time feedback pairs, constructed in 3 Local Site 1, Remote Site 1,
parallel, are prioritized off-line based on simulation PMU 2 PMU 1
studies.
Controller continuously re-evaluates rankings of all Local Site 2, Remote Site 3,
16 pairs based on observed data quality and PMU 2 PMU 1
measured latencies. AP, o
Controller seamlessly switches to a different pair AP, ‘\\
based on the most recent rankings of the 16 pairs. \\\ AP,
Typical latencies measured to date are well within = ° ° (To pDcﬁ

tolerances.
— Network latencies of PMU data are 5-25 ms

— PDCI bandwidth >> 5 Hz with delay * 20— 25 ms  APis
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Do No Harm:
Supervisory System Design

Watchdog circuit is implemented in hardware and handles bumpless transfer,
heartbeat, and emergency stop functions

* The asynchronous control loop handles estimation and monitoring functions
that are slower than real time

* Real-time supervisor must detect and respond to grid conditions

[ Watchdog Clrcwt_\7 AP,
4 Real-ti A A
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Watchdog Circuit

* Installed on prototype at BPA in June 2015 and upgraded in November 2015
e Safety circuit monitors the heartbeat indicators and E-Stop button

e Overriding design philosophy was to make the system “failsafe” — failure of
any component would safely disconnect the control system
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PDCI Controller Interface

Status Indicators WT"C""“
Real-Time 12 s 4l s ey e g »
Controller ® & ¢ ¢ ¢ ¢ ¢ ¢

Asynchronous
PC ®» ® &6 © & & ¢ ¢

Signal Monitoring

RT Controller Asynchronous PC
Heartbeat Heartbeat

CONSORTIUM for
ELECTRIC RELIABILITY
TECHNOLOGY SOLUTIONS

10



Real-Time Supervisor

* Immediately disarms controller if any abnormal
condition is detected

e QOscillation detection
— Disarm controller if out-of-band oscillations are detected in
feedback signal or on PDCI

* Islanding detection
— Disarm controller if islanding between local and remote signal
locations is detected
— Uses local, remote, and relative frequencies; and relative angle
tolerances to detect islanding
 PMU validity and time-latency management
— Bumpless switching between feedback pairs
— Disarm controller if no pairs available

* Emergency stop
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Asynchronous Supervisor

e Gain/Phase margin

monitoring

— Assures controller is NOT

destabilizing any mode/ |

— Requires periodic low-
level probing

PDCI monitoring

— Makes sure control

modulation is entering
PDCI system
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Planned Schedule for Closed-Loop Demonstration

Start Phase Il Q1 FY1e6

V

pen-loop control
testing and PMU Q2
Open-loop PDCI Q3
probe testing and
PMU latency
analysis
Q4

Closed-loop testing
under PDCI probes
and Chief-Jo brake Q1 FY17

ulses
v .

Extensive closed-
loop testing to

evaluate Su'EerVisor Q3
Long-term Q4 CONSORTIUM for
extensive closed ELECTRIC RELIABILITY
TECHNOLOGY SOLUTIONS

loop testing
13




Project Direction and Next Steps

* Project will focus on control system deployment by
demonstrating closed-loop operation.

* Phased approach = Gradual increases of power
modulation magnitude and duration of closed-loop
tests.

* Go/no-go decisions between phases based on analysis
results.

« Communication network and cyber security issues will
be a high priority.
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Damping Control using Distributed Storage

* Total storage capacity on order of 50 MW is sufficient

* With 10s of sites deployed, individual ESS capacity = 1 MW is sufficient
» Control strategy uses ESS mostly providing other services =» very little additional cost for large benefit
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Jason Neely, et al, “Structured OF;'IcTr%Siezcation for Parameter Selection of Frequency-
Watt Grid Support Functions for Wide-Area Damping,” International Journal of
Distributed Energy Resources and Smart Grids, vol. 11, no. 1, pp. 69-94, 2015.
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